Data Mesh: Einführung

2 Tage

Termine und Buchung

Beschreibung

In diesem Training zeigen wir dir, was die vier Prinzipien von Data Mesh bedeuten. Du lernst die Herausforderungen der Einführung von Data Mesh kennen und bekommst Empfehlungen für ein schrittweises Vorgehen. Wir werden gemeinsam ein Datenprodukt, das zentrale Element in einem Data Mesh, mithilfe unseres Data Product Canvas entwerfen und die Implementierungsalternativen aufzeigen. Am Ende des Workshops kannst du die soziotechnischen Implikationen von Data Mesh bewerten und Datenprodukte entwerfen.

Das Konzept Data Mesh basiert auf domänenorientierten, dezentralisierten Datenarchitekturen und ermöglicht es Entwicklungsteams, Datenanalysen autonom durchzuführen. Data Mesh ist eine sozio-technische Datenarchitektur und wird in Form der folgenden vier Prinzipien präsentiert:

Das „Domain Ownership“-Prinzip setzt voraus, dass die Domänenteams die Verantwortung für ihre Daten übernehmen. Nach diesem Prinzip sollten analytische Daten in Domänen aufgebaut sein, ähnlich wie die Teamgrenzen, die mit den Bounded Contexts übereinstimmen. Die Verantwortung für analytische und operative Daten wird von dem zentralen Datenteam auf die Domain Teams übertragen.

Das Prinzip „Data as a Product“ wendet die Philosophie des Produktdenkens auf analytische Daten an. Dieser Grundsatz bedeutet, dass es für die Daten Verbraucher jenseits der Domäne gibt. Das Domänenteam ist dafür verantwortlich, die Bedürfnisse anderer Domänen durch die Bereitstellung hochwertiger Daten als Datenprodukte zu befriedigen. Im Grunde sollten die Domänendaten wie jede andere öffentliche API behandelt werden.

Das dritte Prinzip besteht darin, die „Platform Thinking“-Idee auf die Dateninfrastruktur zu übertragen. Ein spezielles Datenplattformteam stellt domänenagnostische Funktionen, Werkzeuge und Systeme zur Erstellung und Konsum von interoperabler Datenprodukte für alle Domänen bereit.

Das Prinzip „Federated Computational Governance“ stellt organisationsübergreifende Prozesse für Data Governance dar. Mit diesem Prinzip erreicht man die Interoperabilität aller Datenprodukte durch eine Standardisierung, die von der Governance-Gilde bestimmt wird. Das Hauptziel ist die Einhaltung der organisatorischen Regeln und der Regularien der Branche.

Agenda

Die Motivation zu Data Mesh. Was sind typische Probleme im Data Engineering, die zur Dezentralisierung von Datenarchitekturen führen?

Wann ist Data Mesh ein richtiger Ansatz?

Das Prinzip „Domain Ownership“

Das Prinzip „Data as a Product“

Das Prinzip „Self-serve Data Platform“

Das Prinzip „Federated Computational Governance“

Entwurf eines Datenprodukts

Dein Nutzen

Lerne den Unterschied zwischen operativen und analytischen Daten.

Lerne die wichtigsten Data-Mesh-Prinzipien wie „Domain Ownership“, „Data as a Product“, „Self-serve Data Platform“ und „Federated Computational Governance“ kennen.

Lerne, wie man ein Datenprodukt entwirft.

Lerne das Zusammenspiel zwischen mehreren Datenprodukten in einem Data Mesh kennen.

Lerne die Bedeutung soziotechnischer Aspekte innerhalb eines Data Mesh kennen.

Zielgruppe

Softwarearchitekt:innen, Datenexpert:innen

Lernziele

Data-Mesh-Konzepte für dezentralisierte Datenarchitekturen verstehen

Entwurf und Implementierung von Datenprodukten kennenlernen

Die vier Data-Mesh-Prinzipien verstehen

Technische und soziotechnische Komponenten für Data Mesh definieren können

Deine Trainer:innen

Dr. Larysa Visengeriyeva

INNOQ

Machine Learning und MLOps

  • AI-Produkte mit Domain-driven Design
  • Data Mesh: Einführung

Larysa ist Senior Consultant bei INNOQ. Sie hat im Bereich Augmented Data Quality an der TU Berlin promoviert. Bei INNOQ beschäftigt sie sich mit dem Thema der Operationalisierung von Machine Learning (MLOps). Sie ist Autorin von ml-ops.org.

Dr. Simon Harrer

INNOQ

Passende Architektur, Clean Code, Remote Mob Programming

  • Data Mesh für Führungskräfte
  • Data Mesh: Einführung
  • Online Team Event mit Remote Mob Programming

Dr. Simon Harrer ist Berater bei INNOQ. Er ist Softwareentwickler im Herzen, der sich mittlerweile zur dunklen Seite, nämlich der Welt der Daten, zugewandt hat. Er hat datamesh-architecture.com mit ins Leben gerufen und das Data Mesh Buch von Zhamak Dehghani ins Deutsche übersetzt. Neben der tagtäglichen Data Mesh Beratung arbeitet er an dem Data Mesh Manager - ein SaaS Produkt, das Data Mesh Initiativen auf die Überholspur setzt.

Jochen Christ

INNOQ

Self-contained Systems, Autor von rest-feeds.org

  • Data Mesh für Führungskräfte
  • Data Mesh: Einführung
  • Online Team Event mit Remote Mob Programming

Jochen Christ ist Senior Consultant bei INNOQ. Er ist ein erfahrener Software-Architekt und Spezialist Data Mesh. Er hat mittlerweile über 10 Unternehmen bei der Einführung von Data Mesh begleitet. Jochen ist Co-Autor von datamesh-architecture.com, datamesh-governance, und datacontract.com.

Theo Pack

INNOQ

Software-Architektur, verteilte Systeme, Cloud-Native

  • Data Mesh: Einführung

Theo ist Senior Consultant bei INNOQ und seit 10+ in der Softwareentwicklung tätig. Er begeistert sich für Cloud-native Anwendungen, verteilte Systeme, Domain-driven Design, DevOps und agile Softwareentwicklung.

Fachinfos und Bücher

Data Mesh – Eine dezentrale Datenarchitektur entwerfen

Wir befinden uns an einem Wendepunkt im Umgang mit Daten. Unser bisheriges Datenmanagement wird den komplexen Organisationsstrukturen, den immer zahlreicheren Datenquellen und dem zunehmenden Einsatz von KI nicht mehr gerecht. Dieses praxisorientierte Buch von Zhamak Dehghani führt dich in Data Mesh ein, ein dezentrales soziotechnisches Konzept basierend auf modernen verteilten Architekturen. Data Mesh ist ein neuer Ansatz für die Beschaffung, Bereitstellung, den Zugriff und die Verwaltung analytischer Daten, der auch skaliert. Ins Deutsche übersetzt von unseren Trainern Jochen Christ und Simon Harrer.

Inhouse Training

Du kannst dieses Training auch als Inhouse-Training exklusiv für dein Team buchen. Bitte nutze dafür unser Anfrage-Formular.

Jetzt anfragen

Relevante weitere Trainings